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Context

In my appreciation of the work of my PhD supervisor John Foun-
tain, I wrote the following:

“T was particularly in awe of Nambooripad ...who with
his theory of biordered sets appeared to be a mathemat-
ical magician.”

See — V. A. R. Gould, M. V. Lawson, A Tribute to John B.
Fountain, Semigroup Forum 99 (2019), 1-8.



When writing the above statement, I had in mind the following
paper by Nambooripad (still unsurpassed):

K. S. S. Nambooripad, Structure of regular semigroups I., Mem.
Amer. Math. Soc. 22 (1979), no. 224, vii+119pp.



One of the things I learnt from Nambooripad was to apply cat-
egory theory to the study of semigroups: where a category is
regarded as a generalized monoid.

Specifically, to apply groupoid theory to the study of inverse
semigroups.

I have done this in two, quite distinct ways in my research:



1. Inverse semigroups are regarded as special kinds of ordered
groupoids. This invites us to develop inverse semigroup
within the framework of ordered groupoid theory. This led to
a new perspective on the theory of E-unitary inverse semi-
groups.

2. Inverse semigroups are viewed as non-commutative meet semi-
lattices. This leads us to generalize classical Stone duality to
a non-commutative setting and to a connection with a class
of topological groupoids.



In this talk, I will describe these two different applications of
groupoid theory to the theory of inverse semigroups.

My book — M. V. Lawson, Inverse semigroups: the theory of

partial symmetries, World Scientific, 1998 — contains a discus-
sion of the theory of ordered groupoids applied to the study of

inverse semigroups.




The paper — M. V. Lawson, D. H. Lenz, Pseudogroups and
their étale groupoids, Adv. Math. 244 (2013), 117-170 — is
a convenient starting point for the theory of non-commutative
Stone duality.



Essential groupoid theory

Informally, a groupoid is a group with many identities and a partially defined
multiplication. A groupoid with a single identity is a group.

Formally we define groupoids as follows; observe that for us everything is an
arrow.

A groupoid G is a (for us, small) category in which every arrow is invertible.
The set of identities of G is denoted by GG,. The ‘0’ stands for ‘objects’.

In a groupoid, there are structural maps m, d and r.

Define d(g) = g !¢ and r(g) = gg~*.

The product of g and h is defined precisely when d(g) = r(h); in this case,
we write m(g, h) = gh.



Essential inverse semigroup theory

Groups are the abstract versions of groups of bijections whereas inverse semi-
groups are the abstract versions of inverse semigroups of partial bjiections.

A semigroup S is an inverse semigroup if for each a € S there exists a unique
element a~ ! such that a = aa"'a and a1 = ataa 1.

Inverse semigroups contain lots of idempotents since a~'a and aa~! are idem-
potents. (An inverse semigroup with exactly one idempotent is a group).

The idempotents of an inverse semigroup commute with each other. If e is
an idempotent so too is aea™! for any a € S.

Observe that ae = a(atae) = a(ea ta) = (aea=1)a. Thus idempotents can

‘pass through elements’ whilst still remaining idempotents.



Let S be an inverse semigroup. Let a € S. It is useful to define
the following idempotents

d(a) = a ta and r(a) = aa" 1.

Keep in mind the following diagram
r(a) «— d(a).

Regard the elements of an inverse semigroup as being abstract
partial bijections.
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The natural partial order on an inverse semigroup

Let S be an inverse semigroup. Define a < b iff a = be for some
idempotent e.

e < is a partial order called the natural partial order.

e Ifa<bthenal<ipl

o If a <band ¢ < d then ac < bd.

If e and f are idempotents then e < f iff e = ef.
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Observe that if a,b < ¢ then both a—1b and ab—! are idempotents.

More generally, we say that a and b are compatible if both a1b
and ab—1 are idempotents.

It follows, that a necessary condition for a and b to have a join
IS that they be compatible.
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1. Ordered groupoids and inverse semigroups

The goal of this part of the talk is to show that the theory of
ordered groupoids sheds light on the theory of E-unitary inverse
semigroups.
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The groupoid associated with an inverse semigroups

Let S be an inverse semigroup. We can associate a groupoid
with S as follows.

Restrict the multiplication of S to those pairs (a,b) where d(a) =

r(b).
Lemma With the above definitions, (S,-) is a groupoid.

We lose information by restricting to the groupoid, but we can
recapture S by using the natural partial order.
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Let a,b € S. Put e=d(a)r(b). Then
ab = (ae) - (eb).

The following diagram shows what is going on
b

ae ; eb

We need to formalize the notion of a groupoid equipped with a
partial order.
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Ordered groupoids
This definition goes back to the work of Charles Ehresmann.

Let G be a groupoid equipped with a partial order. We say that it is an
ordered groupoid if it satisfies the following axioms:

(OG1) z <y implies that =1 < y~ L.
(OG2) If z <y and 2/ <y’ and Jdzz’ and Jyy’ then zz’ < yy'.

(OG3) Let e be an identity e < d(xz). Then there exists a unique elemement

(xz | e), called the restriction of x to e, such that (z |e) <z and d(x | e) =
€.

(OG4) Let e be an identity e < r(x). Then there exists a unique elemement

(e | ), called the corestriction of x to e, such that (e | ) < x and
r(e|z) =e.
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The ESN-theorem

An ordered groupoid (G,-, <) is called an inductive groupoid if the set of
identities of G with respect to < is a meet semilattice.

T heorem

1. If S is an inverse semigroup then (S, -, <) is an inductive groupoid. Here,
< is the natural partial order.

2. If (G,-,<) is an inductive groupoid then we may define an inverse semi-
group on G by defining x @y = (x| e) - (e|y) where e=d(z) Ar(y).

3. Ehresmannn-Schein-Nambooripad. The category of inductive groupoids
and order-preserving functors is isomorphic to the category of inverse
semigroups and prehomomorphisms, where 6: S — T is a prehomomor-
phism if 0(st) < 6(s)0(t).
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The ESN-theorem generalizes the two ways of viewing meet
semilattices.

But what is important is that it embeds the category of inverse
semigroups in the larger category of ordered groupoids.

We can use the ‘extra space’ this affords to prove new theorems
about inverse semigroups.

For example, it enables us to prove a ‘co-ordinate free' version
of the classical P-theorem describing the structure of E-unitary
inverse semigroups.
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T he structure of E-unitary inverse semigroups:. preparation
Let 6: G — H be a functor between groupoids.

Then 6 is star-injective if 0(g) = 0(q¢") and d(g) = d(g’) implies
that g = ¢'.

Then 0 is covering if 6 is star injective and if A is such that
d(h) = €' where 0(e) = €' then there exists g € G such that

d(g) = e and 6(g) = h.
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Groupoids from group actions

Let G be a group acting on the set X. We write (g,z) — g-z. We
can turn the set X x G into a groupoid P(G, X) whose elements
can be visualized as

a:(ig_l-a:.

The arrows are the ordered pairs (z, g) where d(z,g9) = (¢~ 1-2,1)
and r(x,g9) = (x,1). There is a covering functor n: P(G,X) —- G

given by w(x,g9) = g.

Theorem Let Il be a groupoid, G a group and w: Il — G a sur-
jective covering functor. Then G acts on [y, and I is isomorphic
to P(G,MNy).
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Enlargements

Let G be an ordered subgroupoid of the ordered groupoid H. We
say that H is an enlargement of G if the following axioms hold:

(E1) Gy is an order ideal of H,.

(E2) If z € H and d(z),r(x) € G then z € G.

(E3) If e € H, then there exists x € H such that r(x) = e and
d(x) € G.
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Ordered groupoids from group actions on posets

T heorem

1. Let G be a group acting by order automorphisms on the poset
X. Then N(X,G) is an ordered groupoid and «: N(X,G) — G
IS a surjective ordered covering functor.

2. If Tl is an ordered groupoid that admits a surjective ordered
covering functor onto the group G then I1 is isomorphic to

the ordered groupoid obtained from the action of G by order
automorphisms on the poset I1,.
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T he structure of E-unitary inverse semigroups

Let S be an inverse semigroup. It is said to be E-unitary if e < a, where e is
an idempotent, implies that a is an idempotent.

The following is a co-ordinate free version of what is termed the ‘P-theorem’.
It is a special case of a construction due to Charles Ehresmann.

Theorem Let S be an E-unitary semigroup and let S/o be its maximum
group image. Then, regarded as an inductive groupoid, there is an embedding
v: S — I into an ordered groupoid such that +(S) C N is an enlargement and
w: N — S/o is a surjective ordered covering functor.

For the general result, please see Section 8.3 of my book.
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2. Non-commutative Stone duality

I shall focus on one part of this duality theory — that relat-
ing to Boolean inverse monoids — for simplicity, but it can be
generalized.
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Basic definitions

e An inverse semigroup is said to have finite (resp. infinite)

joins if each finite (resp. arbitrary) compatible subset has a
join.

e An inverse semigroup is said to be distributive if it has finite
joins and multiplication distributes over such joins.

e An inverse monoid is said to be a pseudogroup if it has infinite
joins and multiplication distributes over such joins.

Pseudogroups are the correct abstractions of pseudogroups of
transformations.

25



This leads us to think of inverse semigroup theory from a lattice-
theoretic perspective.

An inverse semigroup is a meet-semigroup if has has all binary
meets.

A distributive inverse semigroup is said to be Boolean if its semi-
lattice of idempotents forms a (generalized) Boolean algebra.
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Summary

Commutative

Non-commutative

Meet semilattice

Inverse semigroup

Frame

Pseudogroup

Distributive lattice

Distributive inverse semigroup

Boolean algebra

Boolean inverse semigroup

Boolean inverse meet-semigroup
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Commutative (= Classical) Stone duality

This was developed by Marshall Stone in 1936. He showed that
Boolean algebras could be described in topological terms.

A topological space is said to be O-dimensional if it has a base of
clopen sets. A compact Hausdorff space which is O-dimensional
is called a Boolean space.

If X is a Boolean space, we denote the Boolean algebra of clopen
subsets of B by B(X).

Let B be a Boolean algebra. Define X(B) to be the set of
ultrafilters on B. If a € B denote by V, the set of ultrafilters
containing a. Define a topology o on X(B) whose open sets are
unions of the sets of the form V,. We call X(B) the Stone space
of B.
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Theorem [Classical Stone duality]

1. Let B be a Boolean algebra. Then B = BX(B).

2. Let X be a Boolean space. Then X = XB(X).
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Examples of classical Stone duality

1. Let B be a finite Boolean algebra. Then each ultrafilter is
determined by an atom. The Stone space of B is then simply
the finite set of atoms equipped with the discrete topology.

2. Tarski proved that any two atomless, countably infinite Boolean
algebras are isomorphic. We call any atomless, countably in-
finite Boolean algebra a Tarski algebra. The Stone space
of the Tarski algebra is a second-countable, O-dimensional,
compact Hausdorff space with no isolated points; such a
space is homeomorphic to the Cantor space.
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Our programme
We shall generalize the above to a non-commutative setting:
Boolean algebras — Boolean inverse monoids
Topological spaces — topological groupoids
One can (but I won't here) replace monoids by semigroups
(which means that compact is replaced by locally compact) and
analogous results can be proved for distributive inverse semi-
groups.
The correct setting for all of the above is a dual adjunction

linking pseudogroups and étale groupoids.
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Etale groupoids

A groupoid is said to be topological if it equipped with a topology
and all maps associated with the groupoid are continuous.

The most important class of topological groupoids are the étale
groupoids.

These are the topological groupoids in which d and r are local
homeomorphisms.
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Resende’s characterization of étale groupoids below explains why
they are so important: their topology forms a monoid. They
therefore have algebraic alter egos.

Proposition A topological groupoid G is étale if and only if Gy
iIs an open set and the product of any two open sets in G is an
open set.
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Local bisections

To build inverse semigroups from groupoids, we shall need the
following

Let G be a groupoid. A subset A C G is called a local bisection if
g,h € A and d(g) = d(h) (respectively, r(g) =r(h)) then g = h.
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Boolean groupoids

An étale groupoid G is called Boolean if its identity space G, is
a Boolean space.

Passing from Boolean groupoids to Boolean inverse monoids is
easy.

Proposition Let G be a Boolean groupoid. Denote by KB(G)
the set of all compact-open local bisections of G. Then KB(G)
Is a Boolean inverse monoid.
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Stone groupoids

Passing from Boolean inverse monoids to Boolean groupoids is a little trickier
and I shall omit the details here.

Let S be a Boolean inverse monoid. Denote the set of ultafilters containing
a by V,. Denote by G(S) the set of all ultrafilters on S. Let o be the topology
on G(S) with basis the set V, where a € S.

Theorem Let S be a Boolean inverse monoid. Then G(S) is a Boolean groupoid.

We call G(S) the Stone groupoid of S.

36



Theorem [Non-commutative Stone duality]

1. Let S be a Boolean inverse monoid. Then S = KB(G(S)).

2. Let G be a Boolean groupoid. Then G = G(KB(G)).
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Refinements

I do not have time to go into details, so I shall simply summarize
the most important results in the following table. Think of it as
a dictionary between algebra and topology:

Boolean inverse monoid Boolean groupoid
Meet-monoid Hausdorff
Fundamental Effective

Tarski algebra of idempotents | Cantor space of identities
O-simplifying Minimal
O-simple Minimal and purely infinite
Group of units Topological full group
Finite Discrete
Basic inverse meet-monoids Hausdorff principal
Countable Second countable
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Non-commutative Stone duality plays an important role in the
theory of C*-algebras where inverse semigroups arise naturally.
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