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REGULARITY OF THE SEMI-GROUP OF REGULAR PROBABILITY

MEASURES ON COMPACT HAUSDORFF TOPOLOGICAL GROUPS

M. N. N. NAMBOODIRI

Abstract. There are many deep results on the structure of REGULAR probability mea-
sures P (G) on compact/locally compact, Hausdorff topological groups G. See, for instance,
the classic monographs by KR Parthasarathy [15], Ulf Grenander [6] A.Mukherjea and Nico-
las A.Tserpes [13]. It is known that the set P (G) forms a semi-group under convolution.

Wendel in his remarkable paper [16] proved a basic result regarding support of
convolution of two probability measures. Consequently, he established that the semi-group
P (G) is not a group. In this short paper, it is proved that for a compact topological group
G, the semi-group P (G) of probability measures is not algebraically regular. However,
there are concrete regular semi-groups in which P (G) can be embedded.

1. Introduction

As mentioned in the abstract, it is well known that the set P (G) of REGULAR probability
measures on a topological group G is a semi-group under convolution, which is abelian if
and only if the group G is abelian. It is also known that P (G) is a compact convex set under
the weak∗ topology of measures. Wendel [16] established many significant results regarding
the algebraic, topological as well as geometric structure of P (G). He showed that P (G) is a
closed convex semi-group which is not a group except for trivial groups G by showing that
the only invertible elements are point mass measures supported on single elements.

The problem we consider is the regularity of P (G). A semigroup is called regular if
each of its element has a genealised inverse.

The main theorem proved in this article is Theorem 3.3, which states that P (G) is not
a regular semi-group unless, of course, for the trivial case G = {e}. In section 4, the
embedding of this semi-group into a regular one is considered. In the concluding section
5, several related problems are given, such as the optimality of this embedding. However,
a possible groundwork is prepared using the already existing theory of non-commutative
Fourier transform of measures in P (G) for the special case where G is a compact Lie group
[1].

2. Priliminaries

Let G be a compact, Hausdorff topological group and B denote the σ-algebra of all Borel
sets in G. A probability measure µ is a nonnegative countably additive function on B such
that the total mass µ(G) = 1. A point mass measure or Dirac delta measure is a measure µ
for which there is an element x ∈ G such that µ(A) = 1 if x ∈ A and zero otherwise; A ∈ B.
Such a measure is usually denoted as δx. One of the interesting results of Wendel is that
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the only invertible elements in P (G) are Dirac delta measures. The product in P (G) is the
convolution ⋆ which is defined as follows;

Definition 2.1. (Convolution) Let µ, ν ∈ P (G). Then µ ⋆ ν is the probability measure
defined as µ ⋆ ν(A) =

∫
µ(Ax−1)dν(x) for every A ∈ B.

Definition 2.2. (Generalised inverse) Let S be a semigroup and let s ∈ S. An element
s† ∈ S is called a generalised inverse of s if ss†s = s.

For example, it is well known that the set MN (C) of all complex matrices of finite order
N is a regular semi-group. The property regularity is almost essential in the fundamental
characterization theorems of KSS Nambooripad [14]. In this short note, we do not analyze
the implications and consequences of Nambooripad’s theory in this concrete semi-group
which is postponed to a different project altogether.

3. Regularity Question

To avoid confusion we will adopt the following convention.For a measure µ,the

usual regularity in the measuretheritic sense will be addressed as REGULAR

and the algebraic regularity will be addressed as ”regular”.

For a compact topological group G, J.G. Wendel [16] proved that the set P (G) is a

semi-group which is not a group under convolution by proving that the only

invertible elements in P (G) are Dirac delta measures. One crucial property needed
for measures under consideration is the regularity which is not guaranteed for compact
topological groups. Next, we quote a basic theorem due to Wendel.

Definition 3.1. (Support) Support of µ ∈ P (G) is defined as supp(µ) = {g ∈ G : µ(Eg) >
0 for every neighbourhood Eg of g ∈ G}.

Theorem 3.2 (Wendel). Let A and B be supports of two measures µ and ν in P (G).Then
supp(µ ⋆ ν) = AB = {xy|x ∈ A, y ∈ B}

Now we prove the main theorem of this short research article.

Theorem 3.3. Let G be a nontrivial compact topological group. Then P (G) is not regular.

Proof. First we prove the assertion for the special case for which group G is such that a2 6= e

for some a ∈ G. Let a ∈ G be such that a2 6= e.Consider the probability measure µ = δe+δa
2

where δx is the Dirac delta measure at x for each x ∈ G.We show that µ does not have a
generalised inverse. Let if possible a generalised inverse µ† of µ exist. Therefore we have

(3.1) µ ⋆ µ† ⋆ µ = µ.

and µ ⋆ µ† is an idempotent. Clearly supp(µ) = {e, a} and H= supp(µ ⋆ µ†) is a compact
subgroup of G by Theorem 1 in [1]. Now combining Wendels’s theorem and equation 3.1 we
find that

(3.2) H.{e, a} = {e, a}

Let h ∈ H and the equation 3.2 above implies that

(3.3) h.{e, a} ⊂ {e, a} ⇒ he = e or he = a and ha = e orha = a.

Now he = e⇒ h = e or h = a. Again ha = e⇒ h = a−1 or ha = a⇒ h = e.
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Thus to summarise we get h = e or h = a−1. Thus the possibilities are h = e for all
h, {h = e, h = a−1},{h = e, h = a}. Thus we get H = {e} or H = {e, a} or H = {e, a−1}.
Now H is a group. The second and third option would imply that a2 = e which is against
the hypothesis.Therefore we have H = {e}. Now µ ⋆ µ† is a projection and therefore we get
µ ⋆ µ† = δe, which is the identity.Thus µ is right invertible Let supp(µ†) = F . Observe that
supp(µ ⋆ µ†) = {e}. Therefore we have {e, a}.F = {e}. Let f ∈ F .Then e.f = f = e and
a.f = e ⇒ a = e, which is again not possible. All these absurd conclusions are consequence
of the assumption that µ is regular.

Now let G be such that a2 = e for every a ∈ G. Let a 6= e. Consider µ = α0δe+α1δa,where
0 ≤ α0, α1 ≤ 1, α0 + α1 = 1.Then we have µ ∈ P (G) and supp(µ) = {e, a}. First we show
that µ is an idempotent if and only if α0 = α1 =

1
2
.

Observe that µ2 = (α2
0 + α2

1)δe + 2α0α1δa. Therefore µ
2 = µ if and only if α2

0 + α2
1 = α0

and 2α0α1 = α1, if and only if α0 = α1 = 1
2
. Now, let if possible, µ for which α0 6= 1

2

has a generalised inverse µ†. It is an easy consequence of Wendel’s support theorem that
µ† = β0δe+β1δa where 0 ≤ β0, β1 ≤ 1, β0+β1 = 1; the proof is as follows. Let H = supp(µ†).
We have by Wendel’s theorem

(3.4) {e, a}.H.{e, a} = {e, a}

Let h ∈ H . Then h ∈ {e, a}.Thus supp(µ†) ⊆ {e, a}.
Now we have that µ ⋆ µ† is an idempotent. But an easy computation shows that

(3.5) µ ⋆ µ† = (α0β0 + α1β1)δe + (α0β1 + α1β0)δa

Therefore we must have (α0β0+α1β1) =
1
2
= (α0β1+α1β0). Solving the above linear equations

we obtain α0 =
1
2
= α1 provided β0 6= β1. Now assume that β0 = β1.This means that βk =

1
2

for all k. Now we use the full force of generalised inverse as follows. We have

[(α0β0 + α1β1)δe) + (α0β1 + α1β0)δa]× (α0δe + α1δa) = α0δe + α1δa

⇒
α0 + α1

2
= α0 ⇒ α0 =

1

2
= α1

Therefore for αk 6= 1
2
, 0 ≤ α0, α1 ≤ 1, α0 + α1 = 1 α0δe + α1δa will not be regular.This

completes the proof. � �

Remark 3.4. The above regularity problem was stated and left open in [12]. Wendel proved
that the only invertible elements are Dirac delta measures at various points. The problem of
characterizing regular elements of P (G) seems interesting. We do not address this problem
here. Observe that towards the end of the proof of the above theorem we actually solved
this question for a very special case for which G = {e, a}. In fact we prove that the only
regular elements of P (G) are {δe, δa,

δe+δa
2

}.

Remark 3.5. The set P (G) is a closed convex set under weak∗ topology of measures and
{δg : g ∈ G} is the set of extreme points of P (G). Hence by Krein-Millmann theorem, the
closed convex hull conv{δg : g ∈ G} = P (G). In particular, if one consider the subsemi-group
conv{δg : g ∈ G}, it may be possible to locate all regular elements in it geometrically. This
possibility is under investigation.

4. Embedding P (G) in Regular Semigroups

Our next goal is to embed P (G) in larger semigroups in an optimal way. To do this we
use non-commutative Fourier transform techniques.
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4.1. Non-Commutative Fourier Transforms. Recall that for a locally compact topolog-

ical group G ,Ĝ will denote the unitary dual space of G. More explicitly

(4.1) Ĝ = {(π,Hπ)}

where π : G→ B(Hπ), π is unitary, irreducible representation of G on a complex separable
Hilbert space Hπ with the identification by unitary equivalence of representations. It is also
well-known that when G is compact, then each Hπ is finite dimensional. That means the
dimension dπ of Hπ is finite and dπ = 1 if G is abelian. The Fourier transform of a µ ∈ P (G)

is defined as a function on µ̂ : Ĝ→ B(Hπ) defined by

(4.2) µ̂(π)ψ =

∫

G

π(g−1)ψµ(dg)

π ∈ Ĝ. For a compact, Hausdorff group G let M = ∪dπMdπ(C).

A map Φ : Ĝ → M(Ĝ) is called Compatible if for each π ∈ Ĝ, Φ(π) ∈ Mdπ(C). Here
Mdπ(C) denotes the set of all dπ×dπ complex matrices after identifying with B(Hπ) for each
π.

Recall that the set S̃(G) = {γ : Σ → ∪πMdπ(C)} is a regular semigroup.

[1] The problem under investigation is the regularity of the following semi-groups and

finding the maximal regular subsemigroup of P̂ (G).
[2] The regularity of the associated semi group S̃(G).
[3] The regularity of the semigroup ∆(G). Observe that these semigroups are related as

follows.
P̂ (G) ⊂ ∆(G) ⊂ S̃(G).

Theorem 4.1. Let G be a compact topological group Then S̃(G) and ∆(G) are regular
semigroups.

Proof. It is well known that (̃S)(G) and ∆(G) are semi-groups. In either case regularity is

easy to establish, as shown below. Let γ ∈ S̃(G) (or ∆(G)). For each π ∈ Ĝ let γ†(π) be

the Moore-Penrose inverse of γ(π). Clearly γ(†(π) ∈ M(Ĝ). If γ ∈ ∆(G) so is γ†. �

5. Minimal Regular Semigroups Containing P (G)

Next we consider the problem whether there are regular semigroups
˜̂
∆(G) such that

(5.1) P̂ (G) ⊂
˜̂
∆(G) ⊂ ∆(G).

We restrict our attention to compact Lie groups G where new techniques such as Log-Ng

positivity [1] are available which is defined as follows:

Definition 5.1. A compatible function γ : Ĝ→ M is called Lo-Ng positive if

(5.2) Σπ∈Ωdπtr(π(g)γ(π)B(π)) ≥ 0

whenever

(5.3) Σπ∈Ωdπtr(π(g)B(π)) ≥ 0

for all g ∈ G.
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Theorem 5.2. (Theorem 4.3.2, The Lo-Ng Criterion[1]) Let P (G) denote the class of reg-
ular probability measures on a compact Lie groupG and γ : G → M(G) be a comptible
mapping.Then γ = µ̂ if and only if γ is Lo-Ng positive namely

(5.4) hn(g) = Σπ∈Sn
z(n)π dπtr(π(g)γ(π)) ≥ 0

for all g ∈ G,where #(Sm),#(Sn) <∞ if m < n and π0 ∈ Sn for all n.

Remark 5.3. The above theorem is a non-commutative analogue of the celebrated Bochkner’s
theorem: Let G be a locally compact abelian group and Ĝ be the dual group of characters.
Let F : Ĝ→ C. Then F is the Fourier transform of a measure µ,

µ̂(χ) =

∫

G

¯χ(g)µ(dg)F (xi − xj) ≥ 0 if and only if F (ê) = 1, F is continuous at ê.

µ̂(π)ψ =

∫

G

π(g−1)ψµ(dg), π ∈ Ĝ.

6. A few more related questions

Let Ω(G) be the semi-group of all finite products of idempotents in P (G). There are two
questions associated with this.

[1] Is Ω(G) regular?. If so
[2] Is Ω(G) the maximal regular semigroup contained in P (G) ?.
[3] What are the regular elements in P (G)?
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