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1 Introduction

The cross connection theory for the structure of regular semigroups intro-
duced by KSS Nambooripad is discussed here with details on an example.
The example is a four element band S. The normal category L(S) of prin-
cipal left ideals and the normal category R(S) of principal right ideals are
described. It is shown that the semigroup of normal cones TL(S) and TR(S)
are different and non isomorphic to the band S.

2 Categories

• A category (to be more precise, a small category) is a pair (vC, mC)
where vC is called the set of objects and mC is called the set of mor-
phisms. With each f ∈ mC is associated two objects a, called the
domain of f , and b, called the codomain of f . We denote this relation
by writing f : a→ b. We denote the set of all morphisms with domain
a and codomain b as

m(a, b) or [a, b]C or hom(a, b).

Further there is a composition m(a, b)×m(b, c)→ m(a, c) such that

• f(gh) = (fg)h, whenever the products are defined.

• Every morphism f ∈ m(a, b) has a right identity 1b and a left identity
1a such that

f1b = f and 1af = f
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We usually denote a category (vC ,mC) by C only. Also we write C to
denote the morphism class mC so that f ∈ C means that f is a morphism
in C.

The structure preserving mappings between categories are called func-
tors. The following is the definition.

Definition 1. Let C,D be categories. A functor F from C to D is a pair of
mappings, one from vC to vD and the other from mC to mD (both denoted
by F for convenience) satisfying the following.

• If f : a→ b in C then F (f) : F (a)→ F (b) in D.

• For each a ∈ vC
F (1a) = 1F (a).

• For f : a→ b and g : b→ c in C

F (fg) = F (f)F (g).

Another concept that arises in the discussion on categories is that of
natural transformations. These are relations between functors described as
follows.

Definition 2. Let C,D be categories and F,G be functors from C to D. A
natural transformation η : F → G is a collection {ηa : a ∈ vC} of morphisms
in D such that the following hold.

• For each a ∈ vC, ηa is from F (a) to G(a).

• For f : a→ b in C
ηaG(f) = F (f)ηb.

That is the following diagram is commutative.

F (a) G(a)

F (b) G(b)

ηa

G(f)F (f)

ηb

2



Example 1. Examples of functors and natural transformations that occur
frequently in discussions on categories are the following. Let C be a category
and Set be the category of sets with usual mappings as morphisms. For each
object a in C a functor Hom(a,−) : C → Set is defined as follows. For
c, d ∈ vC and f : c→ d

Hom(a,−)(c) = Hom(a, c) = [a, c]C

and Hom(a,−)(f) = Hom(a, f) : Hom(a, c)→ Hom(a, d) is defined by

h 7→ hf

for all h : a → c. These functors are called homfunctors. There is a
naturally defined natural transformation between these homfunctors. Let
Hom(a,−) and Hom(b,−) be homfunctors and g : b → a be a morphism.
Then Hom(g,−) : Hom(a,−) → Hom(b,−) is a natural transformation
defined by

Hom(g,−)c = Hom(g, c) : Hom(a, c)→ Hom(b, c) mapping h 7→ gh.

It is easy to see that every natural transformation from Hom(a,−) to
Hom(b,−) is determined by a morphism g : b→ a.

Theorem 1. Let η : Hom(a,−)→ Hom(b,−) be a natural transformation.
Then there exists a morphism g : b→ a such that η = Hom(g,−).

Definition 3 (Monomorphism, Epimorphism, and Isomorphism). Let C be
a category and f ∈ C.

• f is said to be a monomorphism if gf = hf implies g = h for any
morphisms g, h ∈ C.

• f is said to be an epimorphism if fg = fh implies g = h for any
morphisms g, h ∈ C.

• An isomorphism is a morphism which is both left and right invertible.
That is f : a → b is an isomorphism if and only if there is g : b → a
such that

fg = 1a and gf = 1b.
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3 Normal Category

KSS Nambooripad introduced normal categories starting with the concept
of category with subobjects. This induces a partial order on the object set
vC and inclusion morphisms from a to b for a ≤ b.

Here we modify the description with a directly assigned partial order on
the object set of the category and associating an inclusion morphism from
the smaller object to the bigger one.

A category with this partial order together with the factorization is taken
as a category with normal factorization.

Definition 4 (Category with normal factorization). A category with normal
factorization is a small category C with the following properties.

• The vertex set vC of C is a partially ordered set such that whenever
a ≤ b in vC, there is a monomorphism j(a, b) : a → b in C. This
morphism is called the inclusion from a to b.

• j : (vC,≤) → C is a functor from the preorder (vC,≤) to C which
maps (a, b) to j(a, b) for a, b ∈ vC with a ≤ b.

• For a, b ≤ c in vC, if
j(a, c) = fj(b, c)

for some f : a→ b then a ≤ b and f = j(a, b).

• Every morphism j(a, b) : a→ b has a right inverse q : b→ a such that

j(a, b)q = 1a.

Such a morphism q is called a retraction in C.

• Every morphism f in C has a factorization

f = quj

where q is a retraction, u is an isomorphism and j is an inclusion.
Such a factorization is called normal factorization in C.

Proposition 1 (Epimorphic Component and Image). Let C be a category
with normal factorization. If

f = quj and f = q′u′j′

are two normal factorizations of f ∈ C then j = j′ and qu = q′u′.
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• In this case f◦ = qu is called the epimorphic component of f .

• The codomain of f◦ is called the image of f and is denoted by im f

An important feature of normal categories is the existence of clusters of
morphisms called normal cones. A normal cone is defined as follows.

Definition 5 (Normal Cones). • A cone γ with vertex z is a function
from vC to mC, satisfying the following

– γ(c) ∈ C(c, z) for all c ∈ vC
– If c1 ⊆ c2 then γ(c1) = j(c1, c2)γ(c2)

• If there exist d ∈ vC such that γ(d) is an isomorphism, then γ is called
a normal cone.

• The M set of a normal cone γ is defined as

Mγ = {d ∈ vC : γ(d) is an isomorphism}

z

c1 c2
a

b

γ
(c
1
)

γ
(c

2
)

j(c1, c2)

Now we define normal categories.

Definition 6 (Normal Categories). A normal category is a category C with
normal factorization such that for each a ∈ vC there is a normal cone γ with
γ(a) = 1a.

Here also we deviate slightly from the way in which KSS Nambooripad
had given the condition on existence of normal cones in the definition of
normal categories. In [4] a normal category is defined as a category with
normal factorization in which for every object c there exists a normal cone γ
such that γ(c) is an isomorphism. Now we show that both these descriptions
are equivalent.
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Proposition 2. Let C be a category with normal factorization. Then the
following are equivalent.

• For each a ∈ vC there is a normal cone γ with γ(a) = 1a.

• For each a ∈ vC there is a normal cone γ such that γ(a) is an isomor-
phism.

Example 2 (Normal Category: An Example). One simple example of a
normal category is the category C(X) of all proper subsets of a set X.

Here morphisms are mappings between the sets.
The partial order on objects is the usual inclusion in sets.
The inclusion morphism is the usual inclusion map.
Clearly inclusion map is a monomorphism.

To see that every inclusion j : a → b has a right inverse consider a ⊆ b.
Fix an element z ∈ a. Define q : b→ a by

q(x) =

{
x if x ∈ a
z if x ∈ b and x /∈ a.

Clealy
jq = 1a.

Thus every inclusion has a right inverse. We may verify the remaining
axioms.

For a, b, c ∈ vC(X) let a, b ≤ c and f : a→ b be such that

j(a, c) = fj(b, c).

Now for any x ∈ a

(x)j(a, c) = x and (x)fj(b, c) = (x)f.

So (x)f = x for all x ∈ a.
That is a ⊆ b and f is an inclusion.
Normal factorization is easy to see. For if f : a→ b is a map then Choose

b0 to be the image of f and a0 to be a cross section of

kerf = {(x, y) : f(x) = f(y)}.

Then a0 ≤ a and b0 ≤ b.
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Now q : a → a0 be any extension to a of the identity map on a0. Let u
be the restriction of f to a0 and j = j(b0, b). Then

f = quj

and this is a normal factorization of f .
It may be noted that here a0 and q have several choices possible and

thus the factorization is not unique.
But b0 is the image of f and so is fixed by f .
Consequently the j in the factorization is also unique.
To conclude that C(X) is a normal category it remains to show that

normal cones as required are available.
For any a ∈ vC(X) consider a map α : X → a which is onto. Defining

γ(b) to be the restriction of α to b, that is

γ(b) = α|b for all b ∈ vC(X)

we see that γ is a normal cone in C(X) with vertex a.
Choosing α to be an extension of the identity map on a to a map from

X to a we see that the induced normal cone γ has the property that

γ(a) = 1a.

Thus C(X) is a normal category.

3.1 Normal Category: The General Example

The category of Principal Left Ideals L(S) of a regular semigroup S is the
general example of a normal category. In fact we can see that every normal
category arises as the category L(S) of principal left ideals of a regular
semigroup S.

We observe the following.

• The concept of normal category arises as an abstraction of the category
of principal left[resp. right] ideals of a regular semigroup with properly
defined morphisms.

• Let S be a regular semigroup. The category of principal left ideals
L(S) is defined as follows.

– vL(S) = {Se : e ∈ E(S)} where E(S) is the set of idempotents
of S. Since S is a regular semigroup every principal left ideal is
generated by an idempotent and so vL(S) is the set of all principal
left ideals of S.
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– A morphism from Se to Sf in L(S) is a right translation ρu
induced by an element u ∈ eSf and is denoted by ρ(e, u, f) :
Se→ Sf , defined by x 7→ xu for all x ∈ Se.

• The identity from Se to Se is ρ(e, e, e)

• The compositions are defined by

ρ(e, u, f)ρ(f, v, g) = ρ(e, uv, g).

The normal category structure on L(S) is provided by considering the
partial order on vL(S) as usual inclusion and inclusion morphism as usual
inclusion mapping.

We observe that if Se, Sf ∈ vL(S) and Se ⊆ Sf then ρ(e, e, f) is a
morphism in L(S) and ρ(e, e, f) maps

x 7→ xe = x for all x ∈ Se.

Thus the usual inclusion from Se to Sf is a morphism in L(S).
In this case we can also show that this inclusion from Se to Sf has a

right inverse in L(S). Since Se ⊆ Sf we see that g = fe ∈ fSe and Sg = Se
and so ρ(f, g, g) = ρ(f, g, e) : Sf → Se in L(S). Now for every x ∈ Se

x(ρ(e, e, f)ρ(f, g, e)) = x(ρ(e, e, f)ρ(f, fe, e)) = xefe = xe = x.

Thus ρ(f, g, g) = ρ(f, g, e) is a right inverse of the inclusion ρ(e, e, f).
The general properties of morphisms in L(S) are listed in the following

theorem.

Theorem 2. Let L(S) be the normal category given above. Then the fol-
lowing hold.

• ρ(e, u, f) = ρ(e′, u′, f ′) if and only if eLe′, fLf ′ and u′ = e′u.

• ρ(e, u, f) is a monomorphism if and only if ρ(e, u, f) is injective and
this is true if and only if eRu.

• ρ(e, u, f) is an epimorphism if and only if ρ(e, u, f) is surjective and
this is true if and only if uLf .

• Se and Sf are isomorphic if and only if eDf and ρ(e, u, f) is an
isomorphism if and only if eRuLf .
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• If Se ⊆ Sf then j(Se, Sf) = ρ(e, e, f) and ρ(f, v, e) is a retraction
if and only if ρ(f, v, e) = ρ(f, g, g) for some idempotent g such that
g ≤ f and Sg = Se.

Now we show that every morphism in L(S) admits a normal facorization.

Theorem 3. Every morphism in L(S) has a normal factorization and every
normal factorization of ρ(e, u, f) is of the form

ρ(e, u, f) = ρ(e, g, g)ρ(g, u, h)ρ(h, h, f) (1)

where h ∈ E(Lu) and g ∈ E(Ru)
⋂
ω(e). Here ρ(e, g, g) is a retraction,

ρ(g, u, h) is an isomorphism and ρ(h, h, f) is an inclusion.

When S is a regular semigroup E(Ru)
⋂
ω(e) 6= ∅ for all e ∈ E(S)

and u ∈ eSf with f ∈ E(S). Therefore L(S) is a category with normal
factorization.

3.2 Normal Cones in L(S)

Let S be a regular semigroup and L(S) be the category of principal left
ideals of S. We show that several normal cones exist in L(S).

For each a ∈ S we describe a normal cone ρa in L(S) with vertex Sf = Sa
as follows. For each Se ∈ vL(S)

ρa(Se) = ρ(e, ea, f).

Now if Sg ⊆ Se then

ρa(Sg) = ρ(g, ga, f) = ρ(g, g, e)ρ(e, ea, f) since gea = ga as ge = g.

That is ρa(Sg) = j(Sg, Se)ρa(Se). Choosing an idempotent h such that hRa
we see that

hRaLf

and so ρ(h, a, f) is an isomorphism. Since hRa we have ha = a and so

ρa(Sh) = ρ(h, ha, f) = ρ(h, a, f)

is an isomorphism. Thus ρa is a normal cone for each a ∈ S.
Choosing a = f we see that the normal cone ρf has the propery that

ρf (Sf) = ρ(f, f, f)

is the identity at Sf. This completes the verification that L(S) is a normal
category.
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3.3 All normal categories are L(S)

Now we proceed to show that every normal category arises as L(S) of a
regular semigroup S. First we build up a regular semigroup from a normal
category. This is the semigroup of all normal cones in the category. To be
precise consider a normal category C. Let TC denote the set of all normal
cones in C. Define a product in TC as follows. For γ, δ ∈ TC the product γδ
is the normal cone whose components are given by

(γδ)(a) = γ(a)(δ(cγ))o

where cγ is the vertex of γ and the notation o denotes the epimorphic com-
ponent. It is easy to see that γδ is a normal cone and that the product is
associative.

The following result is often found useful.

Lemma 1. Let γ be a normal cone in a normal category C. For any epi-
morphism g : cγ → c there is a normal cone γ ∗ g whose components are

(γ ∗ g)(a) = γ(a)g.

Proof. Now we show that γ ∗ g is a normal cone.
First we show that for b ≤ a in vC

(γ ∗ g)(b) = j(b, a)(γ ∗ g)(a).

Now
j(b, a)(γ ∗ g)(a) = j(b, a)(γ(a)g)

= γ(b)g = (γ ∗ g)(b).

Next we show that there is an object d such that

(γ ∗ g)(d) is an isomorphism.

Since γ is a normal cone there is b ∈ vC such that γ(b) is an isomorphism.
Now γ(b)g is an epimorphism and so has a normal factorization as

γ(b)g = qu

for a retraction q : b → b0 and an isomorphism u : b0 → c for some b0 ≤ b.
So

(γ ∗ g)(b0) = γ(b0)g = j(b0, b)γ(b)g

= j(b0, b)qu = u

since q : b→ b0 is a retraction. Thus there is a component (γ ∗ g)(b0) which
is an isomorphism. So γ ∗ g is a normal cone.
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Using this lemma we see that TC is a semigroup.
Now we show that TC is a regular semigroup.
Let γ ∈ TC and let cγ = c.

Choose d such that γ(d) = u is an isomorphism.
Choose a normal cone σ such that σ(c) = 1c.
Choose δ = σ ∗ u−1. Then δ(c) = u−1.
Then for any a ∈ vC

(γδγ)(a) = γ(a)(δ(c)γ(d))o

= γ(a)(u−1u)o = γ(a).

That is γδγ = γ and so TC is regular.
We can now show that if C is a normal category then taking S = TC the

normal category L(S) is isomorphic to C.
The following proposition provides the details of this isomorphism.

Proposition 3. Let C be a normal category and TC be the semigroup of
normal cones in C. Then the following hold. For γ, δ ∈ TC

• γLδ in TC if and only if cγ = cδ.

• So the map Sγ 7→ cγ is a bijection from vL(S) to vC.

• Sγ ⊆ Sδ if and only if cγ ≤ cδ.

• For idempotents γ and δ in TC if ρ(γ, σ, δ) : Sγ → Sδ is a morphism
in L(S) then σ ∈ γSδ and so σ(cγ) : cγ → c ≤ cδ for some c ∈ vC.

• For each g : cγ → cδ, γ ∗ go ∈ γSσ and the map

g 7→ ρ(γ, γ ∗ go, δ)

is a bijection from [cγ , cδ]C → [Sγ, Sδ]L(S).

• The above assignment gives a functor from C to L(S).

Theorem 4. The categories C and L(S) where S = TC are isomorphic as
normal categories.
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3.4 TL(S) is not S in general

Now we give an example to show that TL(S) may not be isomorphic to S.
Consider the band {a, b, c, d} which is a union of two right zero semi-

groups {a, b} and {c, d} with c ≤ a and d ≤ b.As a semilattice of rectangular
bands this will appear as follows.

a b

c d

It follows that

ad = d, da = c, bc = c and cb = d.

So
vL(S) = {Sa = {a, c}, Sb = {b, d}, Sc = {}̧, Sd = {d}}

and
Sc ≤ Sa and Sd ≤ Sb.

Now consider all normal cones with vertex Sa.

Sa

Sa Sb
Sc

Sd

γ
(S
a
)

γ
(S
b
)

It can be seen that the cone γ is fully determined by γ(Sa) and γ(Sb).
Since aSa = {a, c} there are only two morphism from Sa to Sa. They are

ρ(a, a, a) and ρ(a, c, a).

Similarly since bSa = {a, c} there are only two morphism from Sb to Sa
and they are

ρ(b, a, a) and ρ(b, c, a).
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Since the vertex of γ is at Sa choosing γ(Sa) = ρ(a, c, a) and γ(b) =
ρ(b, c, a) is not possible as there can not exist an isomorphism component
in this case. Thus there are three normal cones with vertex Sa. These are

γa = ρa, γaac, and γabc

where

γa(Sa) = ρa(Sa) = ρ(a, a, a) and γa(Sb) = ρ(b, a, a)

and
γaac(Sa) = ρ(a, c, a) and γaac(Sb) = ρ(b, a, a)

and
γabc(Sa) = ρ(a, a, a) and γabc(Sb) = ρ(b, c, a).

It may be observed that γaac is not an idempotent.
Similarly there are three normal cones with vertex Sb. Let us denote

them by
γb = ρb, γbbd and γbad

where

γb(Sa) = ρb(Sa) = ρ(a, ab, b) = ρ(a, b, b) and γb(Sb) = ρ(b, b, b)

and
γbbd(Sa) = ρ(a, b, b) and γbbd(Sb) = ρ(b, d, b)

and
γbad(Sa) = ρ(a, d, b) and γbad(Sb) = ρ(b, b, b).

We observe that γbbd is not an idempotent.
Other normal cones in TL(S) are those with vertex Sc and Sd. Since

aSc = {c} = bSc = cSc = dSc we see there is only one normal cone with
vertex Sc. Similarly there is only one normal cone with vertex Sd. These
are ρc and ρd respectively.

The D-structure of TL(S) in this case is the following.

γa = ρa γb = ρb

γaac ∗ γbad
γabc γbbd ∗

ρc ρd
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Here ∗ indicates that corresponding entry is not an idempotent. Clearly
TL(S) is not isomorphic to S.

3.5 The Semigroup TR(S)

In this case the normal category R(S) of principal right ideals and the
corresponding TR(S) are quite different. Here

vR(S) = {aS, cS}

where
aS = bS = S and cS = dS = {c, d}.

Thus R(S) has only two objects aS and cS with cS ≤ aS. Also since aSa =
{a, c} there are only two morphisms in R(S) from aS to aS which are
λ(a, a, a) and λ(a, c, a).

Now a normal cone δ with vertex aS is as follows.

aS

aS
cS

δ
(a
S
)

δ
(c
S
)

Since cS ≤ aS the cone is completely determined by δ(aS). It follows
that there is only one normal cone with vertex aS and similarly there is
only one normal cone with vertex cS. These cones can be considered as
the principal cones λa and λc. Thus TR(S) is a two element semilattice
{λa, λc} with λc ≤ λa. Note that here λb = λa and λd = λc. Thus TR(S)
is also not isomorphic to S.

4 Cross connections

A cross connection is a relation connecting two normal categories so that
one is isomorphic to the normal category L(S) and the other is isomorphic
to the normal category R(S) of a regular semigroup S. That is a cross
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connection determines a regular semigroup S with the above properties.
The cross connection relation is provided in terms of two functors each from
one category into a special dual called normal dual of the other. The usual
dual of a category C is the category of all homfunctors from C to the category
Set of sets. For normal dual we consider functors which are closely related to
homfunctors described in terms of normal cones. These functors are called
H-functors.

We begin with the definition of H-functors.

Definition 7. Let C be a normal category and γ be a normal cone in C.
Then the H-functor H(γ,−) : C → Set is defined as follows.

For a, b ∈ vC and g : a→ b in C

H(γ,−)(a) = H(γ, a) = {γ ∗ fo : f : cγ → a}

and
H(γ, g) : H(γ, a)→ H(γ, b) is defined by

γ ∗ fo 7→ γ ∗ (fg)o.

We can see that each H-functor H(γ,−) is naturally isomorphic to the
homfunctor Hom(c,−) where c = cγ is the vertex of γ. In fact

η : H(γ,−)→ Hom(c,−)

with
ηa : H(γ, a)→ Hom(c, a) given by γ ∗ f0 7→ f

is a natural isomorphism.

Definition 8. Let C be a normal category. Then the normal dual of C is the
category N∗C of all H-functors with natural transformations as morphisms.

The next theorem gives that N∗C is a normal category whenever C is a
normal caegory.

Theorem 5. Let C be a normal category. Then N∗C is also a normal
category with partial order given by

H(γ,−) ≤ H(δ,−) if H(γ, a) ⊆ H(δ, a) for all a ∈ vC.

Further the H-functors have the property that H(γ,−) = H(δ,−) if
and only if γRδ. Since TC is a regular semigroup every R-class contains an
idempotent and so every H(γ,−) is equal to an H(ε,−) for an idempotent
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normal cone ε. Thus every object of N∗C is H(ε,−) for an idempotent
normal cone ε.

It follows that if H(γ,−) = H(ε,−) then Mγ = Mε. So we often denote
Mγ by MH(γ,−).

Another concept we use in defining cross connection is that of local
isomorphism.

For normal categories C and D, a functor Γ : C → D is said to be a
local isomorphism if it is full, faithful, order preserving on objects and is an
isomorphism on ideals 〈c〉 for each c ∈ vC. Here the ideal 〈c〉 of C is the full
subcategory of C with object set {a ∈ vC : a ≤ c}.

Now we give the definition of cross connection between normal categories.

Definition 9. [4] Let C and D be normal categories. A cross connection
is a 4-tuple (C,D,Γ,∆) where Γ : D → N∗C and ∆ : C → N∗D are local
isomorphisms satisfying the condition

c ∈MΓ(d)⇐⇒ d ∈M∆(c)

for all c ∈ vC and d ∈ vD.

We often denote a cross connection (C,D,Γ,∆) by (Γ,∆), if the cate-
gories involved are clear in the context.

The cross connection semigroup S(Γ,∆) associated with a cross con-
nection (Γ,∆) is described as follows. The functors Γ : D → N∗C and
∆ : C → N∗D are realized as functors from the product category C × D to
Set by defining

Γ(c, d) = (Γ(d))(c) and ∆(c, d) = (∆(c))(d).

The local isomorphism property of Γ and ∆ induces a natural isomorphism
χ : Γ → ∆ where Γ and ∆ are functors from C × D to Set. The cross
connection semigroup is the following.

S(Γ,∆) = {(γ, δ) : γ ∈ Γ(c, d) and δ = χ(c,d)(γ) ∈ ∆(c, d)}

for some (c, d) ∈ vC × vD.
The semigroup structure of S(Γ,∆) arises as a subsemigroup of TC×T oD

where T oD is the semigroup on the set TD of normal cones in D with the
dual of the usual composition as product. Moreover when (γ, δ) ∈ S(Γ,∆)
we say that (γ, δ) is a linked pair.

Remark 1. It is possible that a given γ belongs to Γ(c, d) and to Γ(c′, d′)
for c 6= c′ or d 6= d′. Then we may get (γ, δ) and (γ, δ′) as linked pairs
corresponding to the same γ.
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In the next proposition we give some explicit choices of linked pairs of
normal cones and a description of the idempotents in S(Γ,∆).

Proposition 4. [4] Let (Γ,∆) be a cross connection between two normal
categories C and D. Then the following hold. Here c ∈ vC and d ∈ vD.

(i) For each c ∈MΓ(d) there is a unique idempotent normal cone γ(c, d)
in C such that vertex of γ(c, d) is c and Γ(d) = H(γ(c, d),−).

(ii) For each c ∈MΓ(d) there is a unique idempotent normal cone δ(c, d)
in D such that vertex of δ(c, d) is d and ∆(c) = H(δ(c, d),−).

(iii) For each c ∈ MΓ(d) the pair (γ(c, d), δ(c, d)) is a linked pair and the
set of idempotents in the cross connection semigroup S(Γ,∆) is

E(S(Γ,∆)) = {(γ(c, d), δ(c, d)) : c ∈MΓ(d)}.

Example 3. Consider the band {a, b, c, d} given in the previous section.
This has two D-classes as follows.

a b

c d

We have seen that

ad = d, da = c, bc = c and cb = d.

So
vL(S) = {Sa = {a, c}, Sb = {b, d}, Sc = {c}, Sd = {d}}

and
Sc ≤ Sa and Sd ≤ Sb.

We recall that the D-structure of TL(S) in this case is the following.

γa = ρa γb = ρb

γaac ∗ γbad
γabc γbbd ∗

ρc ρd
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Here ∗ indicates that corresponding entry is not an idempotent.
We recall that in this case the normal category R(S) of principal right

ideals has only two objects as given below.

vR(S) = {aS, cS}

and cS ≤ aS and TR(S) is a two element semilattice {λa, λc} with λc ≤ λa.
Now we consider cross connections between the categories C = L(S) and

D = R(S). The natural cross connection (Γ,∆) is the following.

Γ(aS) = H(ε,−) where ε = ρa

Γ(cS) = H(σ,−) where σ = ρc and

∆(Sa) = H(δ,−) where δ = λa

∆(Sb) = H(δ,−) where δ = λa = λb

∆(Sc) = H(τ,−) where τ = λc and

∆(Sd) = H(τ,−) where τ = λc = λd.

Now

Γ(Sa, aS) = H(ε, Sa) = {ε ∗ fo where f : Sa→ Sa} = {ρa, ρc}

Γ(Sb, aS) = H(ε, Sb) = {ε ∗ fo where f : Sa→ Sb} = {ρb, ρd}

Γ(Sc, aS) = H(ε, Sc) = {ε ∗ fo where f : Sa→ Sc} = {ρc}

Γ(Sd, aS) = H(ε, Sd) = {ε ∗ fo where f : Sa→ Sd} = {ρd}

Similarly

Γ(Sa, cS) = H(σ, Sa) = {σ ∗ fo where f : Sc→ Sa} = {ρc}

Γ(Sb, cS) = H(ε, Sb) = {ε ∗ fo where f : Sc→ Sb} = {ρd}

Γ(Sc, cS) = H(ε, Sc) = {ε ∗ fo where f : Sc→ Sc} = {ρc}

Γ(Sd, cS) = H(ε, Sd) = {ε ∗ fo where f : Sc→ Sd} = {ρd}

Also

∆(Sa, aS) = H(δ, aS) = {δ ∗ go where g : aS → aS} = {λa, λc}
∆(Sb, aS) = H(δ, aS) = {λa, λc}
∆(Sc, aS) = H(τ, aS) = {τ ∗ go where g : cS → aS} = {λc}
∆(Sd, aS) = H(τ, aS) = {λc}
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Similarly

∆(Sa, cS) = H(δ, cS) = {δ ∗ go where g : aS → cS} = {λc}
∆(Sb, cS) = H(δ, cS) = {λc}
∆(Sc, cS) = H(τ, cS) = {τ ∗ go where g : cS → cS} = {λc}
∆(Sd, cS) = H(τ, cS) = {λc}.

Note that the natural isomorphism χ : Γ→ ∆ has the following compo-
nents.

χ(Sa, aS) : Γ(Sa, aS)→ ∆(Sa, aS) mapping ρa 7→ λa and ρc 7→ λc.

χ(Sa, cS) : Γ(Sa, cS)→ ∆(Sa, cS) mapping ρc 7→ λc

χ(Sb, aS) : Γ(Sb, aS)→ ∆(Sb, aS) maps ρb 7→ λa and ρd 7→ λc.

χ(Sb, cS) : Γ(Sb, cS)→ ∆(Sb, cS) maps ρd 7→ λc.

Similary other components can be described. It may be noted that here

λa = λb and λc = λd

so that the linked pairs and the semigroup of the cross connection can be
described as follows.

S(Γ,∆) = {(ρa, λa), (ρb, λa), (ρc, λc), (ρd, λc)}.

Clearly S(Γ,∆) is isomorphic to S.
Now we show that in this case there is no other cross connection (Γ1,∆1)

between C = L(S) and D = R(S).
Another choice of a local isomorphism from D to N∗C is the following.

Γ1(aS) = H(γ,−) where γ = γbad and

Γ1(cS) = H(ρc,−).

Now [aS, aS]R(S) = {1aS} and the only natural transformation from H(γ,−)
toH(γ,−) is the identity naural transformation. Also cS ≤ aS andH(ρc,−) ≤
H(γ,−). Thus it follows that Γ1 is a local isomorphism from R(S) to
N∗L(S).

Yet another choice of a local isomorphism is Γ2 given by

Γ2(aS) = H(γ′,−) where γ′ = γabc and

Γ2(cS) = H(ρc,−).
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Now
MΓ1(aS) = {Sb} and MΓ1(cS) = {Sc}.

Also
MΓ2(aS) = {Sa} and MΓ2(cS) = {Sc}.

So Sa is not in MΓ1(d) for any d ∈ vR(S) and Sb is not in MΓ2(d) for any
d ∈ vR(S). In order that Γ1 or Γ2 give rise to a cross connection we need
that both Sa and Sb are in the M -sets of Γ1 or Γ2. Thus Γ1 and Γ2 fails
to be part of a cross connection. Thus we see that there is only one cross
connection in this case.
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