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Session 1. Convergence and Continuity

Consider the following questions

1. Are there integer solutions to the equation

2x + 3y = 4

A R Rajan Director State Encyclopaedia Institute Former Professor and Head Department of Mathematics, University of Kerala Email-arrunivker@yahoo.comIMRT WORKSHOP ON FOUNDATIONS OF ABSTRACT ANALYSIS



2.

Are there integer solutions to the equation

2x + 6y = 7

3. Are there integer solutions to the polynomial equation

2x5 + 3x4 + 6x + 1 = 0
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A. Can the sum of infinitely many reals be a finite real.

B. Consider a sum of infinitely many rationals. Is it always a

rational.
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Consider the following computations.

S = 1 +
1

2
+

1

4
+

1

8
+ · · ·

2S = 2 + 1 +
1

2
+

1

4
+ · · ·

= 2 + S so that

S = 2.
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Compare it with the following.

Σ = 1 + 2 + 4 + 8 + · · ·
2Σ = 2 + 4 + 8 + · · ·

= −1 + 1 + 2 + 4 + 8 + · · · = −1 + Σ so that

Σ = −1

Obviously unacceptable.
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Real Number System

The set R of all real numbers has the following properties

Algebraically a field.

Totally ordered and ordered field.

Archimedean Property. That is, given positive reals a, b there

is a positive integer n such that na > b.

Completenes with respect to the order.
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Completeness

Completeness of the set of all real numbers is the most basic

property on which the analysis of real numbers depends.

This property asserts the existence of a unique Least Upper Bound

(LUB) for all subsets which are bounded above.

Also it asserts the existence of a unique Greatest Lower Bound

(GLB) for all subsets which are bounded below.
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Example 1

The set A = {x : x2 + x + 1 < 7} is bounded above.

Every element of A is less than 2.

Also in this case 2 is the LUB of A.

Qn. Is 2 ∈ A.
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As another example consider

Example 2

The set B = {x : x2 − x < 1} is bounded above.

Every element of A is less than 2.

In this case the LUB of B is not that visible. But by completeness

property we have a LUB say β.

Qn. Is β ∈ B.

Qn. Is B bounded below.
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Observe that LUB and GLB may not exist in the set Q of rationals.

The set B = {x ∈ Q : x2 − x ≤ 1} is bounded above.

Every element of A is less than 2.

In this case the LUB of B does not exist if our domain of activity

is set of rationals only.
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Theorem 3

(i) In every interval (a, b) of the real line there is a rational number.

(ii) In every interval (a, b) of the real line there is an irrational

number.
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Series and Sequences

Decimal expansion gives

1

3
= ·33333 · · · = ·3 + ·03 + ·003 + · · ·

This is an infinte sum, a SERIES.

Conversely consider the series

·3 + ·03 + ·003 + · · ·

and find the sum.
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Example 4

Construct a sequence of rationals converging to
√

2.

a1 = 1.4, a2 ∈ Q ∩ (
a1 +

√
2

2
,
√

2), a3 ∈ Q ∩ (
a2 +

√
2

2
,
√

2), . . .

Then
√

2− an can be made arbitrarily small for large enough n.

We use the fact that every interval contains a rational number.
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Another well known approximating sequence for
√

2 is given by the

Babylonian method of approximation to
√

2.

a1 = 1 (any choice); an+1 =
1

2
(an +

2

an
).
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This gives

a1 = 1

a2 =
3

2

a3 =
17

12

a4 =
577

408
... =

...
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Definition

A sequence (xn) of real numbers is said to converge to a real

number L if the following hold.

Given ε > 0 there exists a natural number N such that

|xn − L| < ε for all n ≥ N.

A R Rajan Director State Encyclopaedia Institute Former Professor and Head Department of Mathematics, University of Kerala Email-arrunivker@yahoo.comIMRT WORKSHOP ON FOUNDATIONS OF ABSTRACT ANALYSIS



Test the convergence of the sequence ( 1n ).

Test whether ( 1n ) converges to 1.

Test whether ( 1n ) converges to 1/2.

Test whether ( 1n ) converges to 1/4.
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Test whether the sequence (1/n) converges to zero. Given ε = 1/2

we can choose N = 3. Then an < ε for all n ≥ 3.

Given ε = 1/4 we can choose N = 5. Then an < ε for all n ≥ 5.

Given ε = 3/100 we can choose N = 100. Then an < ε for all

n ≥ 100 etc.
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Example 5

Show that the sequence (1/
√

n) converges to zero. Given ε = 1/2

we can choose N = 5. Then an < ε for all n ≥ 5

Given ε = 1/4 we can choose N = 17. Then an < ε for all n ≥ 17

Given ε = 1/10 we can choose N = 101. Then an < ε for all

n ≥ 101 etc.
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Limit of functions

Definition Let f be a real valued function defined on an interval

[a, b]. L is said to be the limit of f (x) at x = c if

for every ε > 0 there exists δ > 0 such that

|f (x)− L| < ε whenever |x − c | < δ.
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Continuous Functions

Usual classes of functions

Polynomials

Rational functions

Trigonometric functions

Exponential functions

Rational functions

Greatest integer function
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Example 6

Discuss the continuity of f (x) = x2−1
x−1 at x = 1.

Observe that f (x) is not defined at x = 1.

But we may find whether f (x) has a limit at x = 1.
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See some of the values

f (0) = 1

f (1/2) = 1.5

f (3/4) = 1.75

f (7/8) = 1.875 etc .

We may show that this limit is 2.
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Intermediate value property

Determination of zeros of f (x) = ex − 5x .

f (0) = 1 and f (1), f (2) are negative and f (3) is positive.

So there is one zero in (0, 1) and one zero in (2, 3).
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Uniform Convergence

Example 7

Let fn(x) = xn for x ∈ [0, 1]. Then

fn(x) converges to 0 for x < 1

and

fn(x) converges to 1 for x = 1.

Note that each fn(x) is continuous. But f (x) = lim fn(x) is not

continuous at x = 1.
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Theorem 8

If a sequence (fn(x)) of continuous functions congverges uniformly

in an interval then the limit function f (x) = limn→∞ fn(x) is also

continuous.
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Example 9

Let fn(x) = xn for x ∈ [0, 12 ]. Then

fn(x) converges to 0 for x

so that f (x) = lim fn(x) = 0 for all x .

It can be seen that (fn(x)) converges uniformly in [0, 12 ]. Further

the limit function f (x) is continuous in [0, 12 ].
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Now consider fn(x) = xn for x in the open interval (0, 1). Then

fn(x) converges to 0 for x

so that f (x) = lim fn(x) = 0 for all x .

Here the limit function is continuous but the convergence is not

uniform.
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Example 10

fn(x) = sin nx
n! is uniformly convergent in R.

The series
∑ xn

n! = 1 + x + x2

2! + x3

3! + · · · is uniformly convergent in

any interval.
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IMRT Analysis Workshop

Questions

1. Describe a collection of infinitely many rationals whose sum is a

rational number.

2. Describe a collection of infinitely many rationals whose sum is

an irrational number.
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3. Find a choice of N corresponding to the following given ε in

determining the convergence of the sequence (1/n2).

(i) ε = 1, (ii) ε = 1/2 (iii) ε = 1/10.
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4. Find limn→∞
n
√

2.

A R Rajan Director State Encyclopaedia Institute Former Professor and Head Department of Mathematics, University of Kerala Email-arrunivker@yahoo.comIMRT WORKSHOP ON FOUNDATIONS OF ABSTRACT ANALYSIS



5.Verify whether the sequence ( n
√

n) is convergent. If so find the

limit.

1 Show that n
√

n > n+1
√

n + 1 for n ≥ 3.

2 Show that ( n
√

n) ≥ 1 for all n.
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6. Show that (1− 1
n )−n converges to e. Use the fact that (1 + 1

n )n

converges to e.
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7. Verify the convergence of the following series

1
∑ 1

n

2
∑ 1√

n

3
∑ an√

n!

4
∑ (−1)n

2n+1 (Madhava–Grigory Series for π/4)
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8. Discuss the meaning of 2
√
2 in the form that

2n = 2× 2× 2× · · · × 2 (n times).
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9. Describe the continuity of f (x) = x sin(1/x).
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10. Describe the continuity of f (x) = [x ] the greatest integer less

than or equal to x .
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11. Describe the continuity of f (x) =

1 + x if x ≤ 1

2 otherwise.
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12 Describe the continuity of f (x) =

1+x
1−x if x 6= 1

2 otherwise.
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